A new approach for audio classification and segmentation using Gabor wavelets and Fisher linear discriminator

نویسندگان

  • Ruei-Shiang Lin
  • Ling-Hwei Chen
چکیده

Rapid increase in the amount of audio data demands an efficient method to automatically segment or classify audio stream based on its content. In this paper, based on the Gabor wavelet features, an audio classification and segmentation method is proposed. This method will first divide an audio stream into clips, each of which contains one-second audio information. Then, each clip is classified as one of two classes or five classes. Two classes contain speech and music; pure speech, pure music, song, speech with music background, and speech with environmental noise background are for five classes. Finally, a merge technique is provided to do segmentation. In order to make the proposed method robust for a variety of audio sources, we use Fisher Linear Discriminator to obtain features with the highest discriminative ability. Experimental results show that the proposed method can achieve over 98% accuracy rate for speech and music discrimination, and more than 95% for a five-way discrimination. By checking the class types of adjacent clips, we can also identify more than 95% audio scene breaks in audio sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet

  Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...

متن کامل

Offline Face Recognition System Based on Gabor- Fisher Descriptors and Hidden Markov Models

This paper presents a new offline face recognition system. The proposed system is built on one dimensional left-toright Hidden Markov Models (1D-HMMs). Facial image features are extracted using Gabor wavelets. The dimensionality of these features is reduced using the Fisher’s Discriminant Analysis method to keep only the most relevant information. Unlike existing techniques using 1D-HMMs, in cl...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

P14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering

Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...

متن کامل

Discriminant Analysis of the two dimensional Gabor Features for face recognition

In this paper, a new technique called Two Dimensional Gabor Fisher Discriminant (2DGFD) is derived and implemented for image representation and recognition. In our approach, the Gabor wavelets are used to extract facial features. The Principal Component Analysis (PCA) is applied directly on the Gabor transformed matrices to remove redundant information from the image rows and a new direct two d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005